Characterization of amenable semigroups with a unique invariant mean

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CHARACTERIZATION OF EXTREMELY AMENABLE SEMIGROUPS

Let S be a discrete semigroup, m (S) the space of all bounded real functions on S with the usualsupremum norm. Let Acm (S) be a uniformly closed left invariant subalgebra of m (S) with 1 c A. We say that A is extremely left amenable if there isamultiplicative left invariant meanon A. Let P = {h ?A: h =|g-1,g | forsome g ?A, s ?S}. It isshown that . A is extremely left amenable if and only ...

متن کامل

Subsemigroups of Cancellative Amenable Semigroups

We generalize a theorem of Frey by giving sufficient conditions for a subsemigroup T of a cancellative left amenable semigroup S to be left amenable. In particular, we show that if S is left amenable and T does not contain a free subsemigroup on two generators, then T is left amenable as well.

متن کامل

Simple Amenable C∗-algebras With a Unique Tracial State

Let A be a unital separable amenable quasidiagonal simple C∗-algebra with real rank zero, stable rank one, weakly unperforated K0(A) and with a unique tracial state. We show that A must have tracial rank zero. Suppose also that A satisfies the Universal Coefficient Theorem. Then A can be classified by its (ordered) K-theory up to isomorphism. In particular, A must be a simple AH-algebra with no...

متن کامل

Amenable Groups with a Locally Invariant Order Are Locally Indicable

We show that every amenable group with a locally invariant partial order has a left-invariant total order (and is therefore locally indicable). We also show that if a group G admits a left-invariant total order, and H is a locally nilpotent subgroup of G, then a left-invariant total order on G can be chosen so that its restriction to H is both left-invariant and right-invariant. Both results fo...

متن کامل

Optimal strategies for a game on amenable semigroups

The semigroup game is a two-person zero-sum game defined on a semigroup (S, ·) as follows: Players 1 and 2 choose elements x ∈ S and y ∈ S, respectively, and player 1 receives a payoff f(xy) defined by a function f : S → [−1, 1]. If the semigroup is amenable in the sense of Day and von Neumann, one can extend the set of classical strategies, namely countably additive probability measures on S, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1983

ISSN: 0386-2194

DOI: 10.3792/pjaa.59.321